Artificial intelligence for modeling and understanding extreme weather and climate events

Abstract

In recent years, artificial intelligence (AI) has deeply impacted various fields, including Earth system sciences, by improving weather forecasting, model emulation, parameter estimation, and the prediction of extreme events. The latter comes with specific challenges, such as developing accurate predictors from noisy, heterogeneous, small sample sizes and data with limited annotations. This paper reviews how AI is being used to analyze extreme climate events (like floods, droughts, wildfires, and heatwaves), highlighting the importance of creating accurate, transparent, and reliable AI models. We discuss the hurdles of dealing with limited data, integrating real-time information, and deploying understandable models, all crucial steps for gaining stakeholder trust and meeting regulatory needs. We provide an overview of how AI can help identify and explain extreme events more effectively, improving disaster response and communication. We emphasize the need for collaboration across different fields to create AI solutions that are practical, understandable, and trustworthy to enhance disaster readiness and risk reduction.

Publication
Nature Communications
Ioannis Papoutsis
Ioannis Papoutsis
Head of Orion Lab
Assistant Professor of Artificial Intelligence for Earth Observation @ NTUA
Adjunct Researcher @ NOA

Earth Observation, Machine Learning, Natural Hazard Monitoring

Ioannis Prapas
Ioannis Prapas
PhD Candidate

My research interests include Deep Learning, Earth Observation, Wildfire Forecasting, Modeling Earth System Dynamics.

Spyros Kondylatos
Spyros Kondylatos
PhD Candidate

My research interests include Deep Learning, Bayesian Deep Learning, Earth Observation, Natural Hazards, Wildfires Forecasting